Experimental investigation of sediment erosion generated by a coandă-effect-based polymetallic-nodule collector

More Info
expand_more

Abstract

Owing to the absence of direct contact between hydraulic polymetallic-nodule collectors and seabed, hydraulic collection is deemed, from an environmental point of view, the most preferred technique in nodule mining. To design a hydraulic collector that results in minimum sediment disturbance, it is crucial to develop a solid understanding of the interaction between the collector and the sea bed. To this end, we performed a series of small-scale experiments where several operational conditions were tested, yielding the first quantitative data for sediment erosion resulting from the movement of a hydraulic collector over a sand bed. This paper presents and discusses the experimental results and observations. It is found that the collector’s forward velocity is inversely proportional to the bed-sediment erosion depth, since the bed is exposed to the flow for a longer time when the collector drives slower and vice versa. Contrarily, an increased jet velocity leads to a larger erosion depth. Furthermore, when the collector underside is nearer to the bed, a larger sediment layer is exposed to the water flow, resulting in a larger erosion depth. Finally, the experimental results show that a larger amount of water entrained into the collection duct results in a smaller erosion depth, implying that the flow velocities under the collector are lower in this case.