Combining accuracy and prior sensitivity for classifier design under prior uncertainty

Conference Paper (2006)
Author(s)

TCW Landgrebe (TU Delft - Multimedia Computing)

Bob Duin (TU Delft - Multimedia Computing)

Multimedia Computing
More Info
expand_more
Publication Year
2006
Multimedia Computing
Pages (from-to)
512-521
ISBN (print)
3-540-37236-9

Abstract

Consideringtheclassi¿cationprobleminwhichclasspriorsormisallocationcostsarenotknownprecisely,receiveroperatorcharacteristic(ROC)analysishasbecomeastandardtoolinpatternrecognitionforobtainingintegratedperformancemeasurestocopewiththeuncertainty.Similarly,insituationsinwhichpriorsmayvaryinapplication,theROCcanbeusedtoinspectperformanceovertheexpectedrangeofvariation.InthispaperwearguethateventhoughmeasuressuchastheareaundertheROC(AUC)areusefulinobtaininganintegratedperformancemeasureindependentofthepriors,itmayalsobeimportanttoincorporatethesensitivityacrosstheexpectedprior-range.Weshowthataclassi¿ermayresultinagoodAUCscore,butapoor(large)priorsensitivity,whichmaybeundesirable.Amethodologyisproposedthatcombinesbothaccuracyandsensitivity,providinganewmodelselectioncriterionthatisrelevanttocertainproblems.Experimentsshowthatincorporatingsensitivityisveryimportantinsomerealisticscenarios,leadingtobettermodelselectioninsomecases

No files available

Metadata only record. There are no files for this record.