Applying a random parameters Negative Binomial Lindley model to examine multi-vehicle crashes along rural mountainous highways in Malaysia

Journal Article (2018)
Author(s)

Rusdi Rusli (Queensland University of Technology, Politeknik Sultan Mizan Zainal Abidin)

Md Mazharul Haque (Queensland University of Technology)

Amir Pooyan Afghari (University of Queensland)

Mark King (Queensland University of Technology)

Affiliation
External organisation
DOI related publication
https://doi.org/10.1016/j.aap.2018.07.006
More Info
expand_more
Publication Year
2018
Language
English
Affiliation
External organisation
Volume number
119
Pages (from-to)
80-90

Abstract

Road safety in rural mountainous areas is a major concern as mountainous highways represent a complex road traffic environment due to complex topology and extreme weather conditions and are associated with more severe crashes compared to crashes along roads in flatter areas. The use of crash modelling to identify crash contributing factors along rural mountainous highways suffers from limitations in data availability, particularly in developing countries like Malaysia, and related challenges due to the presence of excess zero observations. To address these challenges, the objective of this study was to develop a safety performance function for multi-vehicle crashes along rural mountainous highways in Malaysia. To overcome the data limitations, an in-depth field survey, in addition to utilization of secondary data sources, was carried out to collect relevant information including roadway geometric factors, traffic characteristics, real-time weather conditions, cross-sectional elements, roadside features, and spatial characteristics. To address heterogeneity resulting from excess zeros, three specialized modelling techniques for excess zeros including Random Parameters Negative Binomial (RPNB), Random Parameters Negative Binomial – Lindley (RPNB-L) and Random Parameters Negative Binomial – Generalized Exponential (RPNB-GE) were employed. Results showed that the RPNB-L model outperformed the other two models in terms of prediction ability and model fit. It was found that heavy rainfall at the time of crash and the presence of minor junctions along mountainous highways increase the likelihood of multi-vehicle crashes, while the presence of horizontal curves along a steep gradient, the presence of a passing lane and presence of road delineation decrease the likelihood of multi-vehicle crashes. Findings of this study have significant implications for road safety along rural mountainous highways, particularly in the context of developing countries.

No files available

Metadata only record. There are no files for this record.