Detection of Spatially-Close Fiber Segments in Optical Networks
M.A.F. Iqbal (TU Delft - Network Architectures and Services)
S. Trajanovski (TU Delft - Network Architectures and Services)
F.A. Kuipers (TU Delft - Network Architectures and Services)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Spatially-close network fibers have a significant chance of failing simultaneously in the event of man-made or natural disasters within their geographic area. Network operators are interested in the proper detection and grouping of any existing spatially-close fiber segments, to avoid service disruptions due to simultaneous fiber failures. Moreover, spatially-close fibers can further be differentiated by computing the intervals over which they are spatially close. In this paper, we propose (1) polynomial-time algorithms for detecting all the spatially-close fiber segments of different fibers, (2) a polynomial-time algorithm for finding the spatially-close intervals of a fiber to a set of other fibers, and (3) a fast exact algorithm for grouping spatially-close fibers using the minimum number of distinct risk groups. All of our algorithms have a fast running time when simulated on three real-world network topologies.