Automated design of pneumatic soft grippers through design-dependent multi-material topology optimization
Josh Pinskier (CSIRO Data61)
Prabhat Kumar (Indian Institute of Technology Hyderabad)
Matthijs Langelaar (TU Delft - Computational Design and Mechanics)
David Howard (CSIRO Data61)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Soft robotic grasping has rapidly spread through the academic robotics community in recent years and pushed into industrial applications. At the same time, multimaterial 3D printing has become widely available, enabling the monolithic manufacture of devices containing rigid and elastic sections. We propose a novel design technique that leverages both technologies and can automatically design bespoke soft robotic grippers for fruit-picking and similar applications. We demonstrate the novel topology optimisation formulation that generates multi-material soft grippers, can solve internal and external pressure boundaries, and investigate methods to produce air-tight designs. Compared to existing methods, it vastly expands the searchable design space while increasing simulation accuracy.