On approaches for avoiding low-stiffness regions in variable thickness sheet and homogenization-based topology optimization

Journal Article (2021)
Author(s)

R.J.P. Giele (Technical University of Denmark (DTU), TU Delft - Computational Design and Mechanics)

Jeroen Groen (Technical University of Denmark (DTU))

Niels Aage (Technical University of Denmark (DTU))

Casper Schousboe Andreasen (Technical University of Denmark (DTU))

Ole Sigmund (Technical University of Denmark (DTU))

Research Group
Computational Design and Mechanics
DOI related publication
https://doi.org/10.1007/s00158-021-02933-z
More Info
expand_more
Publication Year
2021
Language
English
Research Group
Computational Design and Mechanics
Issue number
1
Volume number
64
Pages (from-to)
39-52

Abstract

Variable thickness sheet and homogenization-based topology optimization often result in spread-out, non-well-defined solutions that are difficult to interpret or de-homogenize to sensible final designs. By extensive numerical investigations, we demonstrate that such solutions are due to non-uniqueness of solutions or at least very flat minima. Much clearer and better-defined solutions may be obtained by adding a measure of non-void space to the objective function with little if any increase in structural compliance. We discuss various alternatives for cleaning up solutions and propose two efficient approaches which both introduce an auxiliary field to control non-void space: one approach based on a cut element based auxiliary field (hybrid approach) and another approach based on an auxiliary element based field (density approach). At the end, we demonstrate significant qualitative and quantitative improvements in variable thickness sheet and de-homogenization designs resulting from the proposed cleaning schemes.

No files available

Metadata only record. There are no files for this record.