An Application of Model Seeding to Search-based Unit Test Generation for Gson
Mitchell Olsthoorn (TU Delft - Software Engineering)
Pouria Derakhshanfar (TU Delft - Software Engineering)
Xavier Devroey (TU Delft - Software Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Model seeding is a strategy for injecting additional information in a search-based test generation process in the form of models, representing usages of the classes of the software under test. These models are used during the search-process to generate logical sequences of calls whenever an instance of a specific class is required. Model seeding was originally proposed for search-based crash reproduction. We adapted it to unit test generation using EvoSuite and applied it to GSON, a Java library to convert Java objects from and to JSON. Although our study shows mixed results, it identifies potential future research directions.