Shape of retracting foils that model morphing bodies controls shed energy and wake structure

Journal Article (2016)
Author(s)

S. C. Steele (Massachusetts Institute of Technology)

J. M. Dahl (University of Rhode Island)

Gabriel D. Weymouth (University of Southampton)

M. S. Triantafyllou (Massachusetts Institute of Technology)

Affiliation
External organisation
DOI related publication
https://doi.org/10.1017/jfm.2016.553
More Info
expand_more
Publication Year
2016
Language
English
Affiliation
External organisation
Volume number
805
Pages (from-to)
355-383

Abstract

The flow mechanisms of shape-changing moving bodies are investigated through the simple model of a foil that is rapidly retracted over a spanwise distance as it is towed at constant angle of attack. It is shown experimentally and through simulation that by altering the shape of the tip of the retracting foil, different shape-changing conditions may be reproduced, corresponding to: (i) a vanishing body, (ii) a deflating body and (iii) a melting body. A sharp-edge, 'vanishing-like' foil manifests strong energy release to the fluid; however, it is accompanied by an additional release of energy, resulting in the formation of a strong ring vortex at the sharp tip edges of the foil during the retracting motion. This additional energy release introduces complex and quickly evolving vortex structures. By contrast, a streamlined, 'shrinking-like' foil avoids generating the ring vortex, leaving a structurally simpler wake. The 'shrinking' foil also recovers a large part of the initial energy from the fluid, resulting in much weaker wake structures. Finally, a sharp edged but hollow, 'melting-like' foil provides an energetic wake while avoiding the generation of a vortex ring. As a result, a melting-like body forms a simple and highly energetic and stable wake, that entrains all of the original added mass fluid energy. The three conditions studied correspond to different modes of flow control employed by aquatic animals and birds, and encountered in disappearing bodies, such as rising bubbles undergoing phase change to fluid.

No files available

Metadata only record. There are no files for this record.