A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

More Info
expand_more

Abstract

The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geometries near sharp interfaces. We compared the fourth-order finite-difference method to fourth-order continuous masslumped finite elements in terms of accuracy and computational cost. The results show that for simple models like a cube with constant density and velocity, the finite-difference method outperforms the finite-element method by at least an order of magnitude. For a model with interior complexity and topography, however, the finite elements are about two orders of magnitude faster than finite differences.

Files