Adaptive schemes for piecewise deterministic Monte Carlo algorithms
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The Bouncy Particle sampler (BPS) and the Zig-Zag sampler (ZZS) are continuous time, non-reversible Monte Carlo methods based on piecewise deterministic Markov processes. Experiments show that the speed of convergence of these samplers can be affected by the shape of the target distribution, as for instance in the case of anisotropic targets. We propose an adaptive scheme that iteratively learns all or part of the covariance matrix of the target and takes advantage of the obtained information to modify the underlying process with the aim of increasing the speed of convergence. Moreover, we define an adaptive scheme that automatically tunes the refreshment rate of the BPS or ZZS. We prove ergodicity and a law of large numbers for all the proposed adaptive algorithms. Finally, we show the benefits of the adaptive samplers with several numerical simulations.