BRiM: A Modular Bicycle-Rider Modeling Framework
T.J. Stienstra (Student TU Delft)
S.G. Brockie (TU Delft - Biomechatronics & Human-Machine Control)
Jason K. Moore (TU Delft - Biomechatronics & Human-Machine Control)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The development of computationally efficient and validated single-track vehicle-rider models has traditionally required handcrafted one-off models. Here we introduce BRiM, a software package that facilitates building these models in a modular fashion while retaining access to the mathematical elements for handcrafted modeling when desired. We demonstrate the flexibility of the software by constructing the Carvallo-Whipple bicycle model with different numerical parameters representing different bicycles, modifying it with a front fork suspension travel model, and extending it with moving rider arms driven by joint torques at the elbows. Using these models we solve a lane-change optimal control problem for six different model variations which solve in mere seconds on a modern personal computer. Our tool enables flexible and rapid modeling of single-track vehicle-rider models that give precise results at high computational efficiency.