Reduced order fluid modeling with generative adversarial networks
Maarten Kemna (Student TU Delft)
A. Heinlein (TU Delft - Numerical Analysis)
K. Vuik (TU Delft - Delft Institute of Applied Mathematics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Surrogate models based on convolutional neural networks (CNNs) for computational fluid dynamics (CFD) simulations are investigated. In particular, the flow field inside two-dimensional channels with a sudden expansion and an obstacle is predicted using an image representation of the geometry as the input. Generative adversarial neural networks (GANs) have been shown to excel at such image-to-image translation tasks. This motivates the focus of this work on investigating the specific effect of adversarial training on model performance. Numerical results show that the overall accuracy of the GANs is generally lower compared to an identical generator model trained directly on the ground truth using an L1 data loss. On the other hand, GAN predictions are often visually more convincing and exhibit a lower continuity residual.