Heat transfer and mass transport in the ocean wave-driven free-surface boundary layer
S. Michele (University of Rome Tor Vergata, University of Plymouth)
E. Renzi (University of Northumbria)
A.G.L. Borthwick (University of Plymouth)
Ton S. Van Den Bremer (TU Delft - Environmental Fluid Mechanics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We present a mathematical model to investigate heat transfer and mass transport dynamics in the wave-driven free-surface boundary layer of the ocean under the influence of long-crested progressive surface gravity waves. The continuity, momentum and convection–diffusion equations for fluid temperature are solved within a Lagrangian framework. We assume that eddy viscosity and thermometric conductivity are dependent on Lagrangian coordinates, and derive a new form of the second-order Lagrangian mass transport velocity, applicable across the entire finite water depth. We then analyse the convective heat dynamics influenced by the free-surface boundary layer. Rectangular distributions of free-surface temperature (i.e. a Dirichlet boundary condition) are considered, and analytical solutions for thermal boundary layer temperature fields are provided to offer insights into free-surface heat transfer mechanisms affected by ocean waves. Our results suggest the need to improve existing models that neglect the effects of free-surface waves and the free-surface boundary layer on ocean mass transport and heat transfer.