Non-Euclidean or non-metric measures can be informative

Conference Paper (2006)
Author(s)

EM Pekalska (TU Delft - Multimedia Computing)

A Harol (TU Delft - Multimedia Computing)

Robert P.W. Duin (TU Delft - Multimedia Computing)

B Spillmann (External organisation)

H Bunke (External organisation)

Multimedia Computing
More Info
expand_more
Publication Year
2006
Multimedia Computing
Pages (from-to)
871-880
ISBN (print)
3-540-37236-9

Abstract

StatisticallearningalgorithmsoftenrelyontheEuclideandistance.Inpractice,non-Euclideanornon-metricdissimilaritymeasuresmayarisewhencontours,spectraorshapesarecomparedbyeditdistancesorasaconsequenceofrobustobjectmatching[1,2].Itisanopenissuewhethersuchmeasuresareadvantageousforstatisticallearningorwhethertheyshouldbeconstrainedtoobeythemetricaxioms.
Thek-nearestneighbor(NN)ruleiswidelyappliedtogeneraldissimilaritydataasthemostnaturalapproach.Alternativemethodsexistthatembedsuchdataintosuitablerepresentationspacesinwhichstatisticalclassi¿ersareconstructed[3].Inthispaper,weinvestigatetherelationbetweennon-Euclideanaspectsofdissimilaritydataandtheclassi¿cationperformanceofthedirectNNruleandsomeclassi¿erstrainedinrepresentationspaces.Thisisevaluatedonaparameterizedfamilyofeditdistances,inwhichparametervaluescontrolthestrengthofnon-Euclideanbehavior.Our¿ndingisthatthediscriminativepowerofthismeasureincreaseswithincreasingnon-Euclideanandnon-metricaspectsuntilacertainoptimumisreached.Theconclusionisthatstatisticalclassi¿ersperformwellandtheoptimalvaluesoftheparameterscharacterizeanon-Euclideanandsomewhatnon-metricmeasure

No files available

Metadata only record. There are no files for this record.