On Pointwise ℓr -Sparse Domination in a Space of Homogeneous Type

More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 E. Lorist
Research Group
Analysis
Issue number
9
Volume number
31
Pages (from-to)
9366-9405
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We prove a general sparse domination theorem in a space of homogeneous type, in which a vector-valued operator is controlled pointwise by a positive, local expression called a sparse operator. We use the structure of the operator to get sparse domination in which the usual ℓ1-sum in the sparse operator is replaced by an ℓr-sum. This sparse domination theorem is applicable to various operators from both harmonic analysis and (S)PDE. Using our main theorem, we prove the A2-theorem for vector-valued Calderón–Zygmund operators in a space of homogeneous type, from which we deduce an anisotropic, mixed-norm Mihlin multiplier theorem. Furthermore, we show quantitative weighted norm inequalities for the Rademacher maximal operator, for which Banach space geometry plays a major role.