Isotonic regression for metallic microstructure data

Estimation and testing under order restrictions

Journal Article (2021)
Author(s)

M. Vittorietti (TU Delft - Statistics, Material Innovation Institute (M2i))

J. Hidalgo Garcia (TU Delft - Team Kevin Rossi)

J Sietsma (TU Delft - Team Kevin Rossi)

Wei Li (TU Delft - Team Kevin Rossi)

G. Jongbloed (TU Delft - Delft Institute of Applied Mathematics)

Research Group
Statistics
Copyright
© 2021 M. Vittorietti, J. Hidalgo Garcia, J. Sietsma, W. Li, G. Jongbloed
DOI related publication
https://doi.org/10.1080/02664763.2021.1896685
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 M. Vittorietti, J. Hidalgo Garcia, J. Sietsma, W. Li, G. Jongbloed
Research Group
Statistics
Issue number
9
Volume number
49
Pages (from-to)
2208-2227
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Investigating the main determinants of the mechanical performance of metals is not a simple task. Already known physically inspired qualitative relations between 2D microstructure characteristics and 3D mechanical properties can act as the starting point of the investigation. Isotonic regression allows to take into account ordering relations and leads to more efficient and accurate results when the underlying assumptions actually hold. The main goal in this paper is to test order relations in a model inspired by a materials science application. The statistical estimation procedure is described considering three different scenarios according to the knowledge of the variances: known variance ratio, completely unknown variances, and variances under order restrictions. New likelihood ratio tests are developed in the last two cases. Both parametric and non-parametric bootstrap approaches are developed for finding the distribution of the test statistics under the null hypothesis. Finally an application on the relation between geometrically necessary dislocations and number of observed microstructure precipitations is shown.