A generalized finite element method for three-dimensional fractures in fiber-reinforced composites

Journal Article (2020)
Author(s)

Phillipe D. Alves (University of Illinois at Urbana Champaign)

A. Simone (TU Delft - Applied Mechanics, Università degli Studi di Padova)

C. Armando Duarte (University of Illinois at Urbana Champaign)

Research Group
Applied Mechanics
DOI related publication
https://doi.org/10.1007/s11012-020-01211-4
More Info
expand_more
Publication Year
2020
Language
English
Research Group
Applied Mechanics
Issue number
6
Volume number
56 (2021)
Pages (from-to)
1441-1473

Abstract

This paper presents a methodology for the analysis of three-dimensional static fractures in fiber-reinforced materials. Fibers are discretely modeled using a modification of the embedded reinforcement method with bond Slip (mERS) that allows its combination with a generalized finite element method (GFEM) for three-dimensional fractures. Since the GFEM mesh does not need to fit fracture surfaces or fibers, the GFEM–mERS can handle fibers bridging across crack faces at arbitrary angles. The method is verified against three-dimensional FEM solutions using conformal discretizations for crack surfaces and fiber boundaries. The comparison of the method against experimental data and convergence studies of the h- and p-version of the method is also presented.

No files available

Metadata only record. There are no files for this record.