Parity games and automata for game logic
Helle Hansen (TU Delft - Energy and Industry)
Clemens Kupke (University of Strathclyde)
Johannes Marti (University of Strathclyde)
Yde Venema (Universiteit van Amsterdam)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Parikh’s game logic is a PDL-like fixpoint logic interpreted on monotone neighbourhood frames that represent the strategic power of players in determined two-player games. Game logic translates into a fragment of the monotone μ -calculus, which in turn is expressively equivalent to monotone modal automata. Parity games and automata are important tools for dealing with the combinatorial complexity of nested fixpoints in modal fixpoint logics, such as the modal μ -calculus. In this paper, we (1) discuss the semantics a of game logic over neighbourhood structures in terms of parity games, and (2) use these games to obtain an automata-theoretic characterisation of the fragment of the monotone μ -calculus that corresponds to game logic. Our proof makes extensive use of structures that we call syntax graphs that combine the ease-of-use of syntax trees of formulas with the flexibility and succinctness of automata. They are essentially a graph-based view of the alternating tree automata that were introduced by Wilke in the study of modal μ -calculus.