Data-driven optimization of building-integrated ducted openings for wind energy harvesting
Sensitivity analysis of metamodels
Zeynab Kaseb (TU Delft - Intelligent Electrical Power Grids)
H. Montazeri (Eindhoven University of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Metamodels are developed and used for aerodynamic optimization of a ducted opening integrated into a high-rise building to maximize the amplification factor within the duct. The duct consists of a nozzle, a throat, and a diffuser. 211 high-resolution 3D RANS CFD simulations are performed to generate training and testing datasets. The space-filling design and Genetic algorithm are used for data sampling and optimization, respectively. The performance of five commonly-used metamodels is systematically investigated: Response Surface Methodology (RSM), Kriging (KG), Neural Network (NN), Support Vector Regression (SVR), and Genetic Aggregation Response Surface (GARS). The investigation is based on (i) detailed in-sample and out-of-sample evaluations of the metamodels, (ii) annual available power in the wind (Pavailable), and (iii) annual energy production (AEP) for a 3-bladed horizontal-axis wind turbine (HAWT) installed in the mid-throat for the optimum designs obtained by the metamodels. The results show that converging-diverging ducted openings can magnify the experienced wind speed by the turbine and enhance the available wind power. In addition, the use of different metamodels can lead to a variation of up to 153% in the estimated Pavailable. For a small dataset, crude yet still acceptable accuracy can be achieved for Genetic Aggregation Response Surface and Kriging at a very low computational time.