An Expanded IPFM Model for Heart Rhythm Analysis

Detecting Atrial Fibrillation Using a Physiological Model

More Info
expand_more

Abstract

Atrial Fibrillation affects millions of people worldwide. It is associated with an impaired quality of life and an increased risk of stroke, cardiac failure and mortality. Treatments exist, but early detection and treatment is crucial, due to the progressive nature of the disease. Algorithms can help with early detection. Machine learning algorithms are commonly trained to diagnose based on ECG data, but the interpretability is low. A physiological model that simulates the heart gives more insight into the situation of the patient. Current approaches, like the IPFM model, simulate only the SA node and generate RR intervals as output, while completely neglecting the interaction between the AV and SA node. By using an IPFM model and including the AV node as well, an extended and more accurate physiological model was built to more accurately detect Atrial Fibrillation. The AV node model is able to estimate PR intervals when the P waves are annotated. This result shows that the model extension is able to capture information about the signal conduction. When the SA node model and the AV node model are cascaded and only the R peaks are considered, the classification accuracy does not improve compared to the SA node model alone. The R peaks alone do not contain sufficient information for accurate parameter estimation. The parameters governing the behavior of the AV node seem different for NSR compared to AF, but more data is needed to confirm this. The ability of the model to predict PR intervals gives hope that the inclusion of P wave data should improve the performance of the classification with the extended physiological model.