Latin Hypercubes and Cellular Automata
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Latin squares and hypercubes are combinatorial designs with several applications in statistics, cryptography and coding theory. In this paper, we generalize a construction of Latin squares based on bipermutive cellular automata (CA) to the case of Latin hypercubes of dimension. In particular, we prove that linear bipermutive CA (LBCA) yielding Latin hypercubes of dimension are defined by sequences of invertible Toeplitz matrices with partially overlapping coefficients, which can be described by a specific kind of regular de Bruijn graph induced by the support of the determinant function. Further, we derive the number of k-dimensional Latin hypercubes generated by LBCA by counting the number of paths of length on this de Bruijn graph.