Team design patterns for moral decisions in hybrid intelligent systems
A case study of bias mitigation
Jip J. van Stijn (Vrije Universiteit Amsterdam)
M.A. Neerincx (TU Delft - Interactive Intelligence, TNO)
Annette ten Teije (Vrije Universiteit Amsterdam)
Steven Vethman (TNO)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Increasing automation in the healthcare sector calls for a Hybrid Intelligence (HI) approach to closely study and design the collaboration of humans and autonomous machines. Ensuring that medical HI systems' decision-making is ethical is key. The use of Team Design Patterns (TDPs) can advance this goal by describing successful and reusable configurations of design problems in which decisions have a moral component and facilitating communication in multidisciplinary teams designing HI systems. For this research, TDPs were developed describing a set of solutions for a design problem in a medical HI system: mitigating harmful biases in machine learning algorithms. The Socio-Cognitive Engineering (SCE) methodology was employed, integrating operational demands, human factors knowledge, and a technological analysis into a set of TDPs. A survey was created to assess the usability of the patterns with regards to their understandability, effectiveness, and generalizability. Results showed that TDPs are a useful method to unambiguously describe solutions for diverse HI design problems with a moral component on varying abstraction levels, usable by a heterogeneous group of multidisciplinary researchers. Additionally, results indicated that the SCE approach and the developed questionnaire are suitable methods for creating and assessing TDPs.