Editorial: Neuromechanics and control of physical behavior: From experimental and computational formulations to bio-inspired technologies

More Info


The motivation behind this research topic was to cut across conventional boundaries that separate movement neuroscience, biomechanics, and robotics. The aim was to underscore that brain and body collaborate to produce behavior in biological organisms. While this is a simple idea, compartmentalization in education and science has often artificially separated brain from body. We also bring forward research paradigms to investigate physical behavior at the interface between humans and interacting robots. Understanding human-robot physical interaction requires the understanding of the complex interplay between brain, body, and the external environment. This could be achieved by employing a neuro-mechanical approach to the study of human and robot movement.

Within the context of a neuromechanical approach, we aimed to collate a research corpus that included work on experimental and neurophysiological analysis, computational modeling, and applications in rehabilitation and bio-inspired robotics. The 22 contributions to this research topic provide a wide range of perspectives and methodologies. The high-caliber contributions to this research topic also highlight the existence of a significant community of researchers interested in an interdisciplinary view toward the study of brain-body and human-robot interactions.