Short-circuit characteristics of superconducting permanent magnet generators for 10 MW wind turbines
Dong Liu (Hohai University)
Xiaowei Song (Vestas Wind System A/S)
X. Wang (TU Delft - Transport Engineering and Logistics)
Mohamed Elhindi (Hohai University)
Urfan Hasanov (Hohai University)
Xiaofan Gou (Hohai University)
Changqing Ye (Hohai University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Superconducting permanent magnet generators (SCPMGs) are a potential candidate for 10 MW direct-drive wind turbine applications. This paper presents two 10 MW SCPMG designs using MgB<sub>2</sub> cables for the armature winding and investigates the short-circuit characteristics of the designed SCPMGs. The first part of the results shows that the SCPMGs can double the shear stress of a conventional low-speed permanent magnet (PM) generator (from 65 kPa to 130 kPa) whilst avoiding demagnetization of the PMs in rated-load operation. However, the power factor has to drop to a range of 0.7-0.8. The second part of the results shows that during a sudden three-phase short circuit, the superconducting armature winding is prone to quench and the PMs are likely to be demagnetized in both proposed designs.