Posture normalisation of 3D body scans
Femke Danckaers (Universiteit Antwerpen)
Toon Huysmans (Universiteit Antwerpen, TU Delft - Human Factors)
Ann Hallemans (Antwerp University Hospital, Universiteit Antwerpen)
Guido De Bruyne (Universiteit Antwerpen)
Steven Truijen (Antwerp University Hospital, Universiteit Antwerpen)
Jan Sijbers (Universiteit Antwerpen)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
For product developers that design near-body products, virtual mannequins that represent realistic body shapes, are valuable tools. With statistical shape modelling, the variability of such body shapes can be described. Shape variation captured by statistical shape models (SSMs) is often polluted by posture variations, leading to less compact models. In this paper, we propose a framework that has low computational complexity to build a posture invariant SSM, by capturing and correcting the posture of an instance. The posture-normalised SSM is shown to be substantially more compact than the non-posture-normalised SSM. Practitioner summary: Statistical shape modelling is a technique to map out the variability of (body) shapes. This variability is often polluted by variations in posture. In this paper, we propose a framework to build a posture invariant statistical shape model. Abbreviations: SSM: statistical shape model; 1D: one-dimensional; 3D: three-dimensional; DHM: digital human model; LBS: linear blend skinning; PCA: princial component analysis; PC: principal component; TTR: thumb tip reach.