Particle-laden pipe flows at high volume fractions show transition without puffs
W.J. Hogendoorn (TU Delft - Multi Phase Systems)
C. Poelma (TU Delft - Multi Phase Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Using ultrasound imaging velocimetry, we are able to present unique insight in transitional particle-laden flows. Together with a Moody diagram of time-averaged properties, we demonstrate that the laminar-turbulent transition behavior at high volume fractions is distinct from the single-phase case and cases with low volume fractions. For low volume fractions, a sharp transition is found with the presence of turbulent puffs, similar to the single-phase case. Seemingly, particles in this regime trigger subcritical transition. For high volume fractions a smooth transition is discovered without turbulent puffs in the transition regime. For this regime, particles cause a supercritical transition.