Experimental investigation of the flow inside a saxophone mouthpiece by particle image velocimetry

More Info
expand_more

Abstract

An experimental study of the flow inside a saxophone mouthpiece in playing conditions is carried out by means of particle image velocimetry at high acquisition rate. Planar velocity measurements on the midsection of a Plexiglas tenor saxophone mouthpiece are performed, respectively, in the mouthpiece baffle and in the reed channel. Sequences of velocity fields inside the mouthpiece baffle and around the reed tip are shown for one reed duty cycle. Maxima of the velocity fluctuations are observed at the upper surface of the mouthpiece at a distance between five and ten reed apertures from the tip. The proper orthogonal decomposition analysis reveals that almost 50% of the kinetic energy in the baffle is distributed in the first two modes displaying a periodic behavior at the fundamental frequency, the rest being turbulent flow behavior. The measured dynamical vena contracta coefficient at the inlet is reasonably constant around the value of 0.6 for reed positions far from closure. This is in agreement with existing steady flow analytical models and previous experimental results.

Files