Scanning stereo-PLIF method for free surface measurements in large 3D domains
M. van Meerkerk (TU Delft - Multi Phase Systems)
Christian Poelma (TU Delft - Multi Phase Systems)
J. Westerweel (TU Delft - Fluid Mechanics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this work, we extend a planar laser-induced fluorescence method for free surface measurements to a three-dimensional domain using a stereo-camera system, a scanning light sheet, and a modified self-calibration procedure. The stereo-camera set-up enables a versatile measurement domain with self-calibration, improved accuracy, and redundancy (e.g., possibility to overcome occlusions). Fluid properties are not significantly altered by the fluorescent dye, which results in a non-intrusive measurement technique. The technique is validated by determining the free surface of a hydraulic flow over an obstacle and circular waves generated after droplet impact. Free surface waves can be accurately determined over a height of L= 100 mm in a large two-dimensional domain (y(x, z) = 120 × 62 mm2), with sufficient accuracy to determine small amplitude variations (η≈ 0.2 mm). The temporal resolution (Δt= 19 ms) is only limited by the available scanning equipment (f= 1 kHz rate). For other applications, this domain can be scaled as needed. Graphic abstract: [Figure not available: see fulltext.].