A Fuglede type theorem for Fourier multiplier operators
Ben de Pagter (TU Delft - Analysis)
Werner J. Ricker (Katholische Universität Eichstätt - Ingolstadt)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Let E be a translation invariant Banach function space over an infinite compact abelian group G and Mφ be a Fourier multiplier operator (with symbol φ) acting on E. It is assumed that E has order continuous norm and that E is reflection invariant (which ensures that φ̄ is also a multiplier symbol for E). The following Fuglede type theorem is established. Whenever T is a bounded linear operator on E satisfying MφT=TMφ, then also Mφ̄T=TMφ̄.