Separate and simultaneous adjustment of light qualities in a real scene
More Info
expand_more
Abstract
Humans are able to estimate light field properties in a scene in that they have expectations of the objects' appearance inside it. Previously, we probed such expectations in a real scene by asking whether a "probe object" fitted a real scene with regard to its lighting. But how well are observers able to interactively adjust the light properties on a "probe object" to its surrounding real scene? Image ambiguities can result in perceptual interactions between light properties. Such interactions formed a major problem for the "readability" of the illumination direction and diffuseness on a matte smooth spherical probe. We found that light direction and diffuseness judgments using a rough sphere as probe were slightly more accurate than when using a smooth sphere, due to the three-dimensional (3D) texture.We here extended the previous work by testing independent and simultaneous (i.e., the light field properties separated one by one or blended together) adjustments of light intensity, direction, and diffuseness using a rough probe. Independently inferred light intensities were close to the veridical values, and the simultaneously inferred light intensity interacted somewhat with the light direction and diffuseness. The independently inferred light directions showed no statistical difference with the simultaneously inferred directions. The light diffuseness inferences correlated with but contracted around medium veridical values. In summary, observers were able to adjust the basic light properties through both independent and simultaneous adjustments. The light intensity, direction, and diffuseness are well "readable" from our rough probe. Our method allows "tuning the light" (adjustment of its spatial distribution) in interfaces for lighting design or perception research.