Negation and partial axiomatizations of dependence and independence logic revisited
Fan Yang (TU Delft - Ethics & Philosophy of Technology, Viikki Biocenter 1)
More Info
expand_more
Abstract
In this paper, we axiomatize the negatable consequences in dependence and independence logic by extending the systems of natural deduction of the logics given in [22] and [11]. We prove a characterization theorem for negatable formulas in independence logic and negatable sentences in dependence logic, and identify an interesting class of formulas that are negatable in independence logic. Dependence and independence atoms, first-order formulas belong to this class. We also demonstrate our extended system of independence logic by giving explicit derivations for Armstrong's Axioms and the Geiger-Paz-Pearl axioms of dependence and independence atoms.
No files available
Metadata only record. There are no files for this record.