Application-level performance of cross-layer scheduling for social VR in 5G

More Info
expand_more

Abstract

Social VR aims at enabling people located at different places to communicate and interact with each other in a natural way. It poses extremely strong throughput and latency requirements on the underlying communication networks. This paper investigates the potential of using cross-layer design approaches for radio access scheduling in order to realize these challenging requirements in (beyond) 5G networks. In particular, we provide an in-depth simulation study of the performance/capacity gains that can be achieved by exploiting the end-to-end latency budget and/or video frame type as cross-layer information in the scheduling decisions, and show how the benefits depend on the actual social VR scenario. This study further reveals the importance of using application-level metrics such as PSNR or SSIM rather than traditional network-level metrics like the packet drop rate in the performance assessment.