Application-level performance of cross-layer scheduling for social VR in 5G
Z. Du (Student TU Delft)
J. L. Van Den Berg (University of Twente)
T. Dimitrovski (TNO)
R. Litjens (TNO, TU Delft - Network Architectures and Services)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Social VR aims at enabling people located at different places to communicate and interact with each other in a natural way. It poses extremely strong throughput and latency requirements on the underlying communication networks. This paper investigates the potential of using cross-layer design approaches for radio access scheduling in order to realize these challenging requirements in (beyond) 5G networks. In particular, we provide an in-depth simulation study of the performance/capacity gains that can be achieved by exploiting the end-to-end latency budget and/or video frame type as cross-layer information in the scheduling decisions, and show how the benefits depend on the actual social VR scenario. This study further reveals the importance of using application-level metrics such as PSNR or SSIM rather than traditional network-level metrics like the packet drop rate in the performance assessment.