Semi-Real Evaluation, and Adaptive Control of a 6DOF Surgical Robot

Conference Paper (2020)
Author(s)

F. Tajdari (TU Delft - Mechatronic Design)

Naeim Ebrahimi Toulkani (Sharif University of Technology)

Nima Zhilakzadeh (Imam Khomeini International University, Qazvin)

Research Group
Mechatronic Design
DOI related publication
https://doi.org/10.1109/PEDSTC49159.2020.9088405
More Info
expand_more
Publication Year
2020
Language
English
Research Group
Mechatronic Design
ISBN (electronic)
9781728158495

Abstract

Sophisticated surgeons are widely indicating the use of surgical robots in order to reject human error, increase precision, and speed. Among well-known robotic mechanisms, parallel robots are broadly more investigated regarding their special characters as higher acceleration, speed, and accuracy, and less weight. Specific surgical procedures confine and restrict their workspace, while controlling and validating the robots are complicated based on their complex dynamic. To this end, in this paper, a 6-DOF robot, with linear manipulators, is designed and controlled. Addressing the inherent nonlinearity of the robot mechanism, an adaptive PID manipulator is employed and validated with nonlinear model. Thus, this paper aims to implement the controller using MATLAB on the nonlinear model designed in Adams software as online. Furthermore, as feasibility study, a 3-axis gyro sensor is calibrated and used to produce complex real movements and desires, which is sending real time signals to MATLAB with microcontroller ATmega 2560. Simulation results show that the adaptive controller identifies the system's dynamic and proceed to reducing error of the position by the time. In addition, the method defines the workspace of both the states and forces which can be an introduction to comprehensive design of such robots.

No files available

Metadata only record. There are no files for this record.