Data-assisted non-intrusive model reduction for forced nonlinear finite elements models

Journal Article (2024)
Author(s)

M. Cenedese (ETH Zürich)

Jacopo Marconi (Politecnico di Milano)

George Haller (ETH Zürich)

S. Jain (TU Delft - Numerical Analysis)

Research Group
Numerical Analysis
DOI related publication
https://doi.org/10.1007/s11071-024-10507-z
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Numerical Analysis
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Spectral submanifolds (SSMs) have emerged as accurate and predictive model reduction tools for dynamical systems defined either by equations or data sets. While finite-elements (FE) models belong to the equation-based class of problems, their implementations in commercial solvers do not generally provide information on the nonlinearities required for the analytical construction of SSMs. Here, we overcome this limitation by developing a data-driven construction of SSM-reduced models from a small number of unforced FE simulations. We then use these models to predict the forced response of the FE model without performing any costly forced simulation. This approach yields accurate forced response predictions even in the presence of internal resonances or quasi-periodic forcing, as we illustrate on several FE models. Our examples range from simple structures, such as beams and shells, to more complex geometries, such as a micro-resonator model containing more than a million degrees of freedom. In the latter case, our algorithm predicts accurate forced response curves in a small fraction of the time it takes to verify just a few points on those curves by simulating the full forced-response.

Files

S11071-024-10507-z.pdf
(pdf | 4.2 Mb)
License info not available