Prediction of mean wave overtopping discharge using gradient boosting decision trees

More Info
expand_more
Publication Year
2020
Language
English
Affiliation
External organisation
Issue number
6
Volume number
12

Abstract

Wave overtopping is an important design criterion for coastal structures such as dikes, breakwaters and promenades. Hence, the prediction of the expected wave overtopping discharge is an important research topic. Existing prediction tools consist of empirical overtopping formulae, machine learning techniques like neural networks, and numerical models. In this paper, an innovative machine learning method-gradient boosting decision trees-is applied to the prediction of mean wave overtopping discharges. This new machine learning model is trained using the CLASH wave overtopping database. Optimizations to its performance are realized by using feature engineering and hyperparameter tuning. The model is shown to outperform an existing neural network model by reducing the error on the prediction of the CLASH database by a factor of 2.8. The model predictions follow physically realistic trends for variations of important features, and behave regularly in regions of the input parameter space with little or no data coverage.

No files available

Metadata only record. There are no files for this record.