Kinetics of different bioreactor systems with Acidithiobacillus ferrooxidans for ferrous iron oxidation
Mohsen Yavari (Sahand University of Technology)
S Ebrahimi (Sahand University of Technology, TU Delft - BT/Environmental Biotechnology)
Valeh Aghazadeh (Sahand University of Technology)
Mohammad Ghashghaee (Iran Polymer and Petrochemical Institute, Tehran)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The relative performance of two biofilm-based airlift reactors using different kinds of packing materials and one fixed bed biofilm reactor with a homemade packing material of high specific area (~ 1000 m2/m3) was addressed. The bioreactors operated under ferrous iron loading rates in the range of 8–120 mol Fe(II)/m3 h. Acidithiobacillus ferrooxidans cells immobilized in the three bioreactors afforded the reactions for an extended period of 120 days of continuous operation at the dilution rates of 0.2, 0.4, 0.7, 1 and 1.2 h−1. The maximum ferrous iron oxidation rates achieved in this study at a hydraulic residence time of 1.2 h were about 91, 68 and 51 mol Fe(II)/m3 h for the fixed bed, airlift1, and airlft2 bioreactors. The performance data from the fixed-bed bioreactor offered a higher potential for ferrous iron oxidation because of fast biofilm development, the formation of a thick biofilm, and lower sensitivity to shear, which enhanced the startup time of the bioreactor and the higher reactor productivity. Proper kinetic models were also presented for both the startup period and the steady-state process.