Design of thermal meta-structures made of functionally graded materials using isogeometric density-based topology optimization
C.V. Jansari (TU Delft - Group Masania)
Stéphane P.A. Bordas (Université du Luxembourg, University of Utah)
Marco Montemurro (Université de Bordeaux)
Elena Atroshchenko (University of New South Wales)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The thermal conductivity of Functionally Graded Materials (FGMs) can be efficiently designed through topology optimization to obtain thermal meta-structures that actively steer the heat flow. Compared to conventional analytical design methods, topology optimization allows handling arbitrary geometries, boundary conditions and design requirements; and producing alternate designs for non-unique problems. Additionally, as far as the design of meta-structures is concerned, topology optimization does not need intuition-based coordinate transformation or the form invariance of governing equations, as in the case of transformation thermotics. We explore isogeometric density-based topology optimization in the continuous setting, which perfectly aligns with FGMs. In this formulation, the density field, geometry and solution of the governing equations are parameterized using non-uniform rational basis spline entities. Accordingly, the heat conduction problem is solved using Isogeometric Analysis. We design various 2D & 3D thermal meta-structures under different design scenarios to showcase the effectiveness and versatility of our approach. We also design thermal meta-structures based on architected cellular materials, a special class of FGMs, using their empirical material laws calculated via numerical homogenization.