Characterization of depolarizing channels using two-photon interference
G. C. Castro Do Amaral (Kavli institute of nanoscience Delft, TU Delft - QID/Tittel Lab, TU Delft - QuTech Advanced Research Centre)
Guilherme Penello Temporao (Pontifical Catholic University of Rio de Janeiro)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Depolarization is one of the most important sources of error in a quantum communication link that can be introduced by the quantum channel. Even though standard quantum process tomography can, in theory, be applied to characterize this effect, in most real-world implementations depolarization cannot be distinguished from time-varying unitary transformations, especially when the timescales are much shorter than the detectors response time. In this paper, we introduce a method for distinguishing true depolarization from fast polarization rotations by employing Hong–Ou–Mandel interference. It is shown that the results are independent of the timing resolutions of the photodetectors.