An in-plane thermal unimorph using confined polymers

Journal Article (2007)
Author(s)

GK Lau (TU Delft - Computational Design and Mechanics)

T Chu Duc (TU Delft - Electronic Components, Technology and Materials)

J.F.L. Goosen (TU Delft - Computational Design and Mechanics)

PM Sarro (TU Delft - Electronic Components, Technology and Materials)

Fred Van Keulen (TU Delft - Computational Design and Mechanics)

Research Group
Computational Design and Mechanics
More Info
expand_more
Publication Year
2007
Research Group
Computational Design and Mechanics
Volume number
17
Pages (from-to)
S174-S183

Abstract

This paper presents the design, simulation and characterization of a new type of in-plane thermal unimorph, which utilizes composite SU-8/silicon microstructures. The unimorph consists of a silicon skeleton and SU-8 photoresist, which encapsulates the silicon skeleton. The silicon skeleton is asymmetric in shape, consisting of a straight segment and a meandering segment. Gaps and surrounds of the skeleton are filled with the SU-8 polymer. Bonds between the polymer filling and the sidewalls of the silicon microstructure enhance thermal expansion and stiffness of the polymer in a transverse direction. Therefore, this unimorph design delivers excellent actuation performance. The composite actuator bends laterally when electro-thermally activated. A 530 µm long, 90 µm wide and 50 µm thick micro-machined device achieves a maximum lateral displacement of 25 µm at a 1.75 V driving voltage and at 17.8 mW input power, at an average temperature below 200 degrees C. It has a simulated lateral stiffness of 1.2 kN m-1. At 1.75 V, it is estimated to produce a 30 mN lateral blocked force that is high compared to other micro-actuators.

No files available

Metadata only record. There are no files for this record.