PULSE: Integrated Parametric Modeling for a Shading System

From Daylight Optimization to Additive Manufacturing

More Info
expand_more

Abstract

This paper presents a parametric approach to an integrated and performance-oriented design, from the conceptual design phase towards materialization. The novelty occurs in the use of parametric models as a way of integrating multidisciplinary design constraints, from daylight optimization to the additive manufacturing process. The work focuses on the case of a customized sun-shading system that tailors daylighting effects for a fully glazed façade of the alleged PULSE building.
The overall workflow includes preliminary analysis on simplified models and an initial parametric model to run computational optimization loops. The output consists of individually unique sun-shading panels, optimized for varying daylighting requirements based on programmatic distribution and specified viewing areas. The resulting geometric complexity was resolved through subsequent detailed parametric models; implementing the structural design requirements and integrating the constraints dictated by the additive manufacturing process, including the necessity to minimize material and 3D-printing time. This paper focuses on a particular part of the overall workflow, describing the support provided by parametric modelling to control geometric complexity and multi-disciplinary requirements.