Three consecutive approximation coefficients

Asymptotic frequencies in semi-regular cases

Journal Article (2018)
Author(s)

C.J. De Jonge (Universiteit van Amsterdam)

Cor Kraaikamp (TU Delft - Applied Probability)

Research Group
Applied Probability
DOI related publication
https://doi.org/10.2748/tmj/1527904823
More Info
expand_more
Publication Year
2018
Language
English
Related content
Research Group
Applied Probability
Issue number
2
Volume number
70
Pages (from-to)
285-317

Abstract

Denote by p n /q n ,n=1,2,3,…, pn/qn,n=1,2,3,…,

the sequence of continued fraction convergents of a real irrational number x x

. Define the sequence of approximation coefficients by θ n (x):=q n |q n x−p n |,n=1,2,3,… θn(x):=qn|qnx−pn|,n=1,2,3,…

. In the case of regular continued fractions the six possible patterns of three consecutive approximation coefficients, such as θ n−1 <θ n <θ n+1  θn−1<θn<θn+1

, occur for almost all x x

with only two different asymptotic frequencies. In this paper it is shown how these asymptotic frequencies can be determined for two other semi-regular cases. It appears that the optimal continued fraction has a similar distribution of only two asymptotic frequencies, albeit with different values. The six different values that are found in the case of the nearest integer continued fraction will show to be closely related to those of the optimal continued fraction.

No files available

Metadata only record. There are no files for this record.