Coinductive foundations of infinitary rewriting and infinitary equational logic
Jörg Endrullis (Vrije Universiteit Amsterdam)
H.H. Hansen (TU Delft - Energy and Industry)
Dimitri Hendriks (Vrije Universiteit Amsterdam)
Andrew Polonsky (Universite Paris Diderot)
Alexandra Silva (University College London)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We present a coinductive framework for defining and reasoning about the infinitary analogues of equational logic and term rewriting in a uniform way. We define Equation found, the infinitary extension of a given equational theory =R, and →∞, the standard notion of infinitary rewriting associated to a reduction relation →R, as follows: (Formula Presented) Equation found Here μ and ν are the least and greatest fixed-point operators, respectively, and (Formula Presented) Equation found The setup captures rewrite sequences of arbitrary ordinal length, but it has neither the need for ordinals nor for metric convergence. This makes the framework especially suitable for formalizations in theorem provers.