Transverse-EPT: A local first order electrical properties tomography approach not requiring estimation of the incident fields
R. Leijsen (TU Delft - Signal Processing Systems)
W. Brink (Universiteit Leiden)
A.G. Webb (TU Delft - Signal Processing Systems)
RF Remis (TU Delft - Signal Processing Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
A new local method for magnetic resonance electrical properties tomography (EPT), dubbed transverse-EPT (T-EPT), is introduced. This approach iteratively optimizes the dielectric properties (conductivity and permittivity) and the z-component of the electric field strength, exploiting the locally E-polarized field structure typically present in the midplane of a birdcage radiofrequency (RF) coil. In contrast to conventional Helmholtz-based EPT, T-EPT does not impose homogeneity assumptions on the object and requires only first order differentiation operators, which makes the method more accurate near tissue boundaries and more noise robust. Additionally, in contrast to integral equation-based approaches, estimation of the incident fields is not required. The EPT approach is derived from Maxwell’s equations and evaluated on simulated data of a realistic tuned RF coil model to demonstrate its potential.