Nonlinear parabolic stochastic evolution equations in critical spaces part II

Blow-up criteria and instantaneous regularization

Journal Article (2022)
Author(s)

Antonio Agresti (Institute of Science and Technology Austria)

Mark C. Veraar (TU Delft - Analysis)

Research Group
Analysis
Copyright
© 2022 Antonio Agresti, M.C. Veraar
DOI related publication
https://doi.org/10.1007/s00028-022-00786-7
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Antonio Agresti, M.C. Veraar
Research Group
Analysis
Issue number
2
Volume number
22
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This paper is a continuation of Part I of this project, where we developed a new local well-posedness theory for nonlinear stochastic PDEs with Gaussian noise. In the current Part II we consider blow-up criteria and regularization phenomena. As in Part I we can allow nonlinearities with polynomial growth and rough initial values from critical spaces. In the first main result we obtain several new blow-up criteria for quasi- and semilinear stochastic evolution equations. In particular, for semilinear equations we obtain a Serrin type blow-up criterium, which extends a recent result of Prüss–Simonett–Wilke (J Differ Equ 264(3):2028–2074, 2018) to the stochastic setting. Blow-up criteria can be used to prove global well-posedness for SPDEs. As in Part I, maximal regularity techniques and weights in time play a central role in the proofs. Our second contribution is a new method to bootstrap Sobolev and Hölder regularity in time and space, which does not require smoothness of the initial data. The blow-up criteria are at the basis of these new methods. Moreover, in applications the bootstrap results can be combined with our blow-up criteria, to obtain efficient ways to prove global existence. This gives new results even in classical L2-settings, which we illustrate for a concrete SPDE. In future works in preparation we apply the results of the current paper to obtain global well-posedness results and regularity for several concrete SPDEs. These include stochastic Navier–Stokes equations, reaction– diffusion equations and the Allen–Cahn equation. Our setting allows to put these SPDEs into a more flexible framework, where less restrictions on the nonlinearities are needed, and we are able to treat rough initial values from critical spaces. Moreover, we will obtain higher-order regularity results.

Files

License info not available