Beyond Nyquist in Frequency Response Function Identification
Applied to Slow-Sampled Systems
Max van Haren (Eindhoven University of Technology)
Leonid Mirkin (Technion Israel Institute of Technology)
Lennart Blanken (Sioux Technologies, Eindhoven University of Technology)
T.A.E. Oomen (TU Delft - Team Jan-Willem van Wingerden, Eindhoven University of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Fast-sampled models are essential for control design, e.g., to address intersample behavior. The aim of this letter is to develop a non-parametric identification technique for fast-sampled models of systems that have relevant dynamics and actuation above the Nyquist frequency of the sensor, such as vision-in-the-loop systems. The developed method assumes smoothness of the frequency response function, which allows to disentangle aliased components through local models over multiple frequency bands. The method identifies fast-sampled models of slowly-sampled systems accurately in a single identification experiment. Finally, an experimental example demonstrates the effectiveness of the technique.