Plasmon-induced enhancement of nonlinear optical processes in a double-resonant metallic nanostructure grating
M.L. Noordam (TU Delft - QN/Kuipers Lab)
F.J. Hernandez Rueda (TU Delft - QN/Kuipers Lab)
L. Y. Talsma (Student TU Delft)
Kobus Kuipers (TU Delft - QN/Quantum Nanoscience)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Nanostructured gratings in a metal surface can highly enhance nonlinear optical processes. The geometrical parameters that characterize a grating can be optimized to achieve intense near-fields, which in turn enhance the nonlinear optical signals. For a nonlinear process that involves multiple frequencies, like four-wave mixing (FWM), the optimization of grating parameters necessary to enhance the radiation in-coupling for both frequencies is not trivial. Here, we propose, compute, and experimentally demonstrate a grating design that is resonant to two excitation frequencies and thus enhances the frequency mixing processes more efficiently. Second- and third-order nonlinear mechanisms are studied using two spatially and temporally overlapped laser pulses with different frequencies. Using our grating design, we achieve an unprecedented nonlinear FWM enhancement factor of 7 × 10 3.