On the Bolotin's reduced beam model versus various boundary conditions
Igor I. Andrianov ( Rhein Energie AG)
Jan Awrejcewicz (Lodz University of Technology)
WT van Horssen (TU Delft - Mathematical Physics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper is devoted to the construction of asymptotically correct simplified models of nonlinear beam equations for various boundary conditions. V.V. Bolotin mentioned that in some cases (e.g., if compressed load is near the buckling value), the so-called „nonlinear inertia“ must be taken into account. The effect of nonlinear inertia on the oscillations of the clamped-free beam is investigated in many papers. Bolotin used some physical assumption and did not compare the order of nonlinear terms in original equations. Below we propose our method for deriving those, which we will named “Bolotin's equations“. This approach is based on fractional analysis of original boundary value problems.