Wind Tunnel Wall Corrections for Two-Dimensional Testing up to Large Angles of Attack

More Info
expand_more
Publication Year
2022
Language
English
Research Group
Wind Energy
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Pages (from-to)
601-629
ISBN (print)
9783030313067
ISBN (electronic)
9783030313074
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

An accurate representation of two-dimensional airfoil characteristics measured in a wind tunnel generally requires the inclusion of corrections for interference effects that exist due to the presence of the wind tunnel walls. This chapter discusses the most commonly used correction schemes both for streamlined and separated flow regimes. The classical correction method based on small velocity perturbations gives very good results up to angles of attack of about 20 degrees for chord-to-tunnel height ratios c/h up to 0.36. Even with separation of the boundary layer at a chord location of 30% the corrected pressure distribution matches that of a much smaller model with c/h = 0.15. In the deep-stall range of angles of attack, where the flow separates from the leading edge, the method based on the wake analysis by Maskell with a blockage factor of 0.96 seems to give good results for two-dimensional models up to c/h values of 0.27. A comparison with measurements corrected with the matrix version of the pressure signature method, which uses the pressure distribution on the tunnel walls, shows that the latter leads to slightly larger corrections. Maskell’s method, for which the blockage parameter of 0.96 apparently is based on a single measurement of a two-dimensional flat plate, seems to give better results when a value of 1.03 is used.

Files

978-3-030-31307-4_27.pdf
(pdf | 0.953 Mb)
- Embargo expired in 18-02-2025
License info not available