Substrate-Specific Evolution of Amine Dehydrogenases for Accessing Structurally Diverse Enantiopure (R)-β-Amino Alcohols
Xinjian Yin (Sun Yat-sen University)
Wenzhong Gong (Sun Yat-sen University)
Yujing Zeng (Sun Yat-sen University)
Hulin Qiu (Sun Yat-sen University)
Lan Liu (Sun Yat-sen University)
Frank Hollmann (TU Delft - BT/Biocatalysis)
Bishuang Chen (Sun Yat-sen University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The biocatalytic oxidative deamination of β-amino alcohols holds significant practical potential in kinetic resolution and/or deracemization process to access (R)-β-amino alcohols. This study exemplifies a notable instance of acquisition and utilization of this valuable oxidative deamination activity. Initially, the mutation N261M (M0) was identified to endow a native valine dehydrogenase with oxidative deamination activity toward a few (S)-β-amino alcohols. Subsequently, a phylogenetic analysis-guided, double-code saturation mutagenesis strategy was proposed to engineer M0's side-chain binding site. This strategy facilitated the substrate-specific evolution of M0, resulting in the creation of a panel of mutants (M1-M4) with noteworthy oxidative deamination activity toward structurally diverse (S)-β-amino alcohols. Using these engineered amine dehydrogenases, termed as β-amino alcohol dehydrogenases (β-AADHs), the complete kinetic resolution and even deracemization of a range of β-amino alcohols have been achieved. This work reports distinct biocatalysts and a synthetic strategy for the synthesis of enantiopure (R)-β-amino alcohols and offers an innovative approach for substrate-specificity engineering of enzymes.