Lengthening of the Sm2+ 4f55d → 4f6 decay time through interplay with the 4f6[5D0] level and its analogy to Eu2+ and Pr3+

Journal Article (2024)
Author(s)

Casper van Aarle (TU Delft - RST/Luminescence Materials)

Karl W. Krämer (University of Bern)

P. Dorenbos (TU Delft - RST/Luminescence Materials)

Research Group
RST/Luminescence Materials
Copyright
© 2024 C. van Aarle, Karl W. Krämer, P. Dorenbos
DOI related publication
https://doi.org/10.1016/j.jlumin.2023.120329
More Info
expand_more
Publication Year
2024
Language
English
Copyright
© 2024 C. van Aarle, Karl W. Krämer, P. Dorenbos
Research Group
RST/Luminescence Materials
Volume number
266
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Recent research activity on Sm2+-doped compounds has significantly increased the amount of available data on 4f55d → 4f6 decay times. This enabled the systematic comparison of spectroscopic and time resolved luminescence data to theoretical models describing the interplay between the 4f55d and 4f6[5D0] excited states on the observed decay time. A Boltzmann distribution between the population of the excited states is assumed, introducing a dependence of the observed 4f55d → 4f6 decay time on the energy gap between the 4f55d and 4f6[5D0] levels and temperature. The model is used to interpret the origin of the large variation in reported 4f55d → 4f6 decay times through literature, and links their temperature dependence to applications such as luminescence thermometry and near-infrared scintillation. The model is further applied to the analogous situation of close lying 4fn-15d and 4fn states in Eu2+ (6P7/2) and Pr3+ (1S0).