Lengthening of the Sm2+ 4f55d → 4f6 decay time through interplay with the 4f6[5D0] level and its analogy to Eu2+ and Pr3+
Casper van Aarle (TU Delft - RST/Luminescence Materials)
Karl W. Krämer (University of Bern)
P. Dorenbos (TU Delft - RST/Luminescence Materials)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Recent research activity on Sm2+-doped compounds has significantly increased the amount of available data on 4f55d → 4f6 decay times. This enabled the systematic comparison of spectroscopic and time resolved luminescence data to theoretical models describing the interplay between the 4f55d and 4f6[5D0] excited states on the observed decay time. A Boltzmann distribution between the population of the excited states is assumed, introducing a dependence of the observed 4f55d → 4f6 decay time on the energy gap between the 4f55d and 4f6[5D0] levels and temperature. The model is used to interpret the origin of the large variation in reported 4f55d → 4f6 decay times through literature, and links their temperature dependence to applications such as luminescence thermometry and near-infrared scintillation. The model is further applied to the analogous situation of close lying 4fn-15d and 4fn states in Eu2+ (6P7/2) and Pr3+ (1S0).